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H2% First, values of kly for (1)Fe111(X)2 and (1)- 
Mn (X), are comparable only at high H (11- decom- 

a much better catalyst (Figure 3). These differences 
in pH dependences of k relate to the pH dependences 
of E" ' potentials for (l7FeIn(X), (Scheme I) and (1)- 
MIII''(X)~ (Scheme VI) species. Thus, E" ' for le- + 
( l)MnTV(OH), - ( l)Mnm(OH), and le- + ( 1)Few(OH), - (l)Fe"'(OH), differ by but 30 mV (AAG" = 0.5 
kcal/mol), and k, for reactions of (l)Mnnl(OH), and 
( 1)Fe111(OH)2 wit% hydroperoxides are comparable 
(Figure 3). The E"' for le- reduction of (l)MnTV(O- 
H)(H20) exceeds that for (1)FeTV(OH)(H20) by 70 mV 
(AAG" = 1.6 kcal/mol), whereas E" ' for le- reduction 
of (1)MnTV(H20), is more positive than that for (1)- 
FeTV(H20), by 130 mV (AAG" = 3.0 kcal/mol) and the 
reaction of ( 1)Mnm(H20)2 with hydroperoxide cannot 
be determined over spontaneous decomposition of hy- 
droperoxide. General catalysis with (Porph)Fe"'(X), 
catalysts is seen only with the IIH2+ species (Scheme 
11), and reactions through the IIH2+ species cannot be 

position). As the pH decreases, (1)Fe #I (X), becomes 

detected with (Porph)Mnm(X), catalysts. It is, there- 
fore, not surprising to find that the reactions of hy- 
droperoxides with (l)Mnm(X), and (2)Mnm(X), are not 
subject to general-acid/base catalysis by H20, (oxygen 
base)/ (oxygen acid) pairs, not (nitrogen base)/ (nitrogen 
acid) pairs at any pH. 

The ratios of the rate constants, at a given pH, for 
the reactions of (Ph),(CH,OCO)COOH, t-BuOOH, and 
Ph(CHJ2COOH with (1)Mnm(X), and (1)Fem(X), are 
comparable, suggesting hydroperoxide 0-0 bond hom- 
olysis. This is supported by the products obtained from 
reaction of t-BuOOH with ( 1)Mn"1(X)2 

With imidazole, ( l)Mnm(X), forms a monoligated 
species which reacts with alkyl hydroperoxides (eq 29) 
with a rate constant, kh, exceeding kly for the reaction 
with (1)Mn111(X)2 by 10-100-fold. 
-d[YOOH]/dt = 

k,,[ (l)Mnlll(X)("imidazole")] [YOOH] (29) 
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In recent years the molecular orbital theory, originally 
developed to study small organic and inorganic mole- 
cules, has been successfully applied to the study of the 
infinite arrays of atoms found in extended solids.' In 
much of this work, arguments based on simple quantum 
mechanical models have been used to account for the 
structures and properties of these large and at times 
dauntingly complex chemical systems. Clear examples 
of this approach can be found in the work of J. K. 
Burdett, R. Hoffmann, and M. H. Whangbo. Their 
contributions have been reviewed recently.' The re- 
search reported in this Account is heavily influenced 
by the viewpoints of the aforementioned researchers. 

In this Account we show how a modified Hiickel 
theory allows one to make accurate predictions about 
the structures of covalently bonded extended solids. 
This modification was suggested independently in 
earlier work by D. G. Pettifor and R. Podloucky and 
in work by J. K. Burdett and me., The modification 
itself has recently been investigated with renewed vigor 
by D. Pettifor's group and our own group at Michigan., 
We call our method second-moment scaling. In order 
to understand the basis of second-moment scaling, we 
consider first the Hiickel theory as it was originally 
applied to unsaturated hydrocarbons. 
Hiickel Theory 

In Hiickel theory one assumes that the principal force 
governing covalent bonds is the overlap of the respective 
atomic orbitals. Formally, this corresponds to solving 

Stephen Lea dld hb underpduclte work at Yak Unlvcnslty and his grsdu- 
ate work at the Univer8ity ol Chicago with J. K. Bwbtt. He dkl hL8 postdoc- 
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the equation H$ = E$, where the off-diagonal elements 
of the Hiickel Hamiltonian, Hij, follow the Wolfsberg- 
Helmholtz approximation: Hij = KSi.(Hii + Hjj), Sij is 
the overlap integral, K is a proportionahy constant, and 
the Hii values are taken from compendiums of atomic 
parameters! In this Account we will generally assume 
that the Si. values depend on the orientations and 
distances oh the respective atomic orbitals. 

One of the best known applications of Hiickel theory 
is for unsaturated hydrocarbon ring systems such as the 
cyclopropenium cation (l), benzene (2), and the hypo- 
thetical cyclobutadiene dianion 3. It is well-known that 
the triangular form, 1, is stable only as a cation and the 
hexagonal form, 2, is stable as a neutral molecule, while 

(1) (a) Hoffmann, R. Solids and Surfaces: A Chemist's View of 
Bonding in Extended Structures; VCH Publiehers: New York, 1988. (b) 
Burdett, J. K. Prog. Solid State Chem. 1984,15, !73. (c) Whangb, M.-H. 
In Crystal Chemistry and Properties of Materials with Qwi-One DI- 
mensionol Structure; Rouxel, J., Ed.; Reidel: Dordrecht, 1986, p 27. 

(2) Early applicationa of the second-momentecaling hypothmia (a) for 
AB (main group and transition metal) phases Pettifor, D. G.; Podloucky, 
R. Phys. Rev. Lett. 1984,63,1080. 6) For the Peierls dietortion: Burdett, 
J. K.; Lee, 5. J. Am. Chem. SOC. 1986, 107,3063. More recent work (c) 
Creseani, J. C.; Pettifor, D. C. J. Phys.: Condens. Matter, submittad for 
publication. (d) Lee, S. J. Am. Chem. SOC. 1991, 113, 101. (e) For 
elemental structures: Lee, S. J.  Am. Chem. SOC., submitted for publi- 
cation. 
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A. R. Inorg. Chem. 1976, 14, 365. (d) Hay, P. J.; Thibeault, J..C.; 
Hoffmann, R J.  Am. Chem. SOC. 1976,97,4884. (e) Hoffmann, tL; h, 
M. Znorg. Chem. 1976,14,1058. (f) Hoffmann, R.; Summerville, R. H. 
J.  Am. Chem. SOC. 1976, 98, 7240. (e) Komiya, S.; Albright, T. A.; 
Hoffmnnn, R.; Kochi, J. K. J. Am. Chem. SOC. 1977, SS, 8440. (h) Thorn, 
D. L.; Hoffmann, R. Inorg. Chem. 1978, 17, 126. (i) Hwhbanka, T.; 
Hoffmann, R.; Whangbo, M.-H.; Stewart, K. R.; E ~ ~ t e i n ,  0.; Canadd, 
E. J. Am. Chem. SOC. 1982,104,3876. (i) Chen, M. M. L.; Hoffmann, R 
J.  Am. Chem. SOC. 1976,98,1647. 
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Figure 1. The r molecular orbital energies for the cyclo- 
propenium cation, benzene, and square cyclobutadiene. 

Figure 2. Differences in energy for the T systems of 1-3 as 
functions of the number of r electrons. See text for figure con- 
ventions. 

the square form, 3 (by the Huckel4N + 2 rule), would 
be more stable as the dianion than the neutral species. 

V V 

1 2 3 

The Hiickel molecular orbital diagrams for these 
three systems can be used to account for the above set 
of facts. These molecular orbital diagrams are shown 
in Figure 1. It may be seen that in each case the stable 
chemical systems contain the exact number of electrons 
required to fill all bonding and nonbonding orbitals. It 
is of interest, however, to reanalyze these molecular 
orbitals in terms of total electronic energy. To do so 
we need to compare equivalent numbers of atoms. In 
this example it is convenient to compare the u orbitals 
of exactly 12 carbon atoms. This is because molecules 
1-3 contain respectively three, six, and four carbon 
atoms and each of these three numbers is a factor of 
12. Therefore we will compare the electronic energies 
of four triangles, 1, two hexagons, 2, and three squares, 
3. For example, with eight ?r electrons the four triangles 
have a Hiickel electronic energy of 168 (8 X 28, see 
Figure l), the two hexagons have an energy of 128 (4 
X 28 + 4 X 18), and the three squares have a total 
energy of 128 (6 X 28 + 2 X OS). 

In the aame manner we may consider different num- 
bers of ?r electrons. It is convenient to plot these data 
in the graphical manner shown in Figure 2. In Figure 
2 the curve labeled as four triangles corresponds to the 
difference in binding energy between the four triangles 
and the two hexagons as a function of the total number 
of u electrons in the system. We adopt the convention 
that when the curve is positive, the triangular form is 
more stable. Similarly, the curve labeled three squares 
represents the difference in energy between the square 
and hexagonal forms. We may use the curves in Figure 
2 to deduce the Hiickel prediction as to which molecular 
form is the most stable one at  any given u-electron 
count. The most stable form corresponds to the curve 
that is the most positive at  the electron count in 
question. Thus at eight electrons/l2 carbon atoms the 
triangular form is most stable; at 12 electrons the 

---2p - - -@p - - - - p  + + o  * # ftm tt 2 P  
Figure 3. The molecular orbital energies for the square H, 
molecule and for two H2 molecules. The left and middle columna 
have a constant resonance integral between bonded H atoms. The 
left and right columns have a constant variance for their molecular 
orbital energies. 

hexagonal form is most stable; and at  18 electrons the 
square form is most stable. When one divides these 
numbers by the numbers of triangles, hexagons, or 
squares, one sees that these three electron counts cor- 
respond to the u-electron count of the experimentally 
known cyclopropenium cation, benzene, and S2N2 
(which is isoelectronic with C4H42-). 
Coordination Problem and Second-Moment 
Scaling 

Predictions based on the total Huckel electronic en- 
ergy are reasonably reliable when the bond breakage 
or formation is not an integral part of the structural 
question under s t ~ d y . ~  For example, in the systems 
discussed in the previous section, the number of bonds 
was invariant among the three 12 carbon atom systems. 

Huckel energies are not reliable, however, when the 
total number of bonds is not conserved? For example, 
consider the four hydrogen atoms aligned in a square 
as opposed to two pairs of hydrogen dimers. The 
Huckel energies of these two arrangements are shown 
in Figure 3. It may be seen that Hiickel theory predicts 
that the tetramer of hydrogen atoms is of the same 
energy as the pair of dimers. This of course is com- 
pletely wrong. The source of this error can be under- 
stood if one recalls that Hiickel energies are propor- 
tional to the overlap integrals, S,, and that the Huckel 
Hamiltonian contains no repulsive interactions. The 
H4 tetramer is therefore automatically conferred an 
additional stabiilty over the pair of H2 dimers since the 
hydrogen atoms are closer to one another in the former 
geometry. This greater proximity leads to larger overlap 
integrals, to lower energy bonding orbitals, and to 
higher energy antibonding orbitals. Therefore, there 
is an overall increase in the variance (where variance 
= Ci(Ei -E  12) for the molecular orbital energies Ei. 

It is diffic"% to suggest a good method of electronic 
structure calculations that will both remove the problem 
of different coordination numbers and at the same time 
leave the theory comparatively simple. However, we 
and others have made an ad hoc suggestion to circum- 
vent this coordination problem.2 We suggest that one 
should scale the molecular orbital diagrams so that 
variance is a constant. For example, in comparing the 
H4 tetramer to the pair of dimers, we adjust the 8 in- 
teraction in the pair of dimers to the values shown at  
the right in Figure 3. With these new values the var- 
iance for the H4 tetramer equals the variance for the 
pair of dimers. It may be seen that, with this scaling, 
the pair of dimers is of lower energy than the tetramer, 

(5 )  For a discussion of this coordination number problem, see: Bur- 
dett, J. K. Structure Bonding 1987, 65, 29. 
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Figure 4. The effect of oxidation and reduction on the structure 
of eight S atoms. Note that P4S4 is isoelectronic with St+. 

Figure 5. Differences in energy between black phosphorus, 
a-P4S4, Sa, 2S4”, and 452% molecules aa functions of the average 
number of valence electrons per atom (e-/atom). See discussion, 
in text, of Figure 2 for figure conventions. The calculation used 
the atomic parameters for S reported in ref 4j. All calculations 
were (second-moment) scaled to that calculated for experimentally 
observed Sa molecules.” 

as is experimentally known to be true. 
We call the above procedure second-moment scaling. 

We could as well have called it variance scaling. This 
is because we always compare the same types of atoms 
in any given calculation. Therefore, the mean of the 
molecular orbital energies is constant, and thus, fixing 
the second moment, p 2  ( p 2  = x r - l ( g / n ) ,  where the Ei 
are the molecular orbital energies and n is the total 
number of molecular orbitals), is equivalent to fixing 
the variance. 
Elemental Structures 

As a simple example of the method, consider the 
change in structure induced in eight sulfur atoms as we 
reduce or oxidize the system. These structures are il- 
lustrated in Figure 4.” We include a-P4S4 as we shall 
assume throughout this Account that isoelectronic 
compounds involving elements from the same row in 
the periodic table are isostructural. In this case, for 
example, we assume a-P4S4 to be htructural  with St+. 
It may be seen that each of these structures contains 
a different number of bonds. Therefore, we need to 
scale the second moments so that they are all equal. In 
practice we do this scaling by actually shrinking or 
expanding the various molecules in a uniform way so 
as to equate the p i s .  We leave bond angles unchanged 
by the geometrical transformation. We also consider 
the overlap integrals between all atoms and all orbitals. 
In Figure 5 we show the results of our Huckel calcula- 
tions on these systems. One may note that the results 
in Figure 5 correspond to the experimental findings 
shown in Figure 4. Furthermore, in Figure 5 we have 
included the black phosphorus structure, which is the 
most stable form of phosphorus.” Black phosphorus 

(6) (a) For elemental structures themselves, see: Donohue, J. The 
Structures of the Elements; Wiley: New York, 1974. (b) For a-P4S4: 
Griffin, A. M.; Minehall, P. C.; Sheldrick, G. M. J.  Chem. SOC., Chem. 
Commun. 1976,809. (c) For S4% (NaS2): Tegman, R. Acta Crystallogr. 
1973, B29, 1463. 

Figure 6. Differences in energy between the Cu (fcc), Zn (hcp), 
Ga, Ge (diamond), As, and Se structures as functions of e-/atom. 
The calculational results are all based on full band calculations 
with the Ge parameters reported in ref 4h. All calculations were 
scaled to the experimentally observed Ge structure. See dis- 
cussion, in text, of Figure 2 for figure conventions. 

Si P S CI 

1 = 8 8 d model; 2 = s,p, 8 d model; 3 = 8 & p model; 

4 I s 8 contracted p model 

Figure 7. Elements whose elemental crystal structures have been 
rationalized through second-moment-scaled Hfickel theory. 
Calculations rely on the indicated valence orbitals. For specific 
atomic parameters, we refs 4. In the case of In, the observed fcc 
distortion” changes the energy by only 0.02 eV/atom. We 
therefore cannot rationalize this subtle distortion. 

is an extended solid wherein every phosphorus atom has 
three bonds. Therefore, we are comparing in Figure 5 
the energies of an extended solid to those of molecules. 
The latter systems are treated by molecular orbital 
methods, whereas the former are determined through 
band calculations. However, this difference is only 
technical. Both types of calculations depend identically 
on the same chemical assumptions. 

Calculations carried out independently in our group 
and by D. G. Pettifor and J. C. Cressoni have shown 
that this technique can be broadly applied to the ele- 
mental structures of much of the periodic table.2 For 
example, we can consider the crystal structures of ele- 
ments 29-34 (Cu, Zn, Ga, Ge, As, and Se).” The first 
three elements in this series are metals. Cu has the face 
centered cubic structure, Zn has the hexagonal closest 
packed structure, and Ga has an unusual 7-coordinate 
structure. Germanium adopts the diamond structure, 
whereas As and Se have, respectively, three and two 
nearest neighbors per atom. These last two elements, 
therefore, both obey the octet rule. In Figure 6 we show 
our calculations comparing these structures. It may be 
seen that, at each integral electron count, the prediction 
based on Huckel theory corresponds to the experi- 
mentally determined structure type. 

In a similar way we can consider the structures of 
other elements. Indeed our method correctly accounts 
for the structures of the elements shown in Figure 7.” 
Several of the actual results for the main-group ele- 
ments are shown in Figure 8. (We discuss the tran- 
sition metals in a later section.) 

It should be noted that, for our calculational tech- 
nique to be effective, the individual variation in atomic 
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Figure 8. Differences in energy for (a) the Li and Be (both hcp), 
boron (R-12),& and carbon structures; (b) the structures of Sb, 
Te, and I; and (c) the Tl (hcp), Pb (fcc), Bi, and Po (simple cubic) 
atructuree as functions of e-/atom. In part a, B parameters were 
used; in part b, Te parameters were used; and in part c, normal 
p and contracted s orbitale were used." See discussion, in text, 
of Figure 2 for figure conventions. I thank D. Chou and S. Carter 
for their help in carrying out the calculations. 

Huckel parameters must be small between neighboring 
elements in a given row of the periodic table. It is this 
small variation that allows us to compare the stability 
of different structure types as a function of the number 
of valence electrons, without explicitly accounting for 
the different types of atoms. 

We find, in general, that the parameters developed 
over the years for extended Huckel theory can be used 
without change in our calculations? This is important 
as we therefore do not adjust our atomic parameters to 
improve the results of our calculations. There is, how- 
ever, one situation wherein the atomic extended Huckel 
parameters need to be modified. Such modifications 
arise if there are atomic orbitals that are halfway be- 
tween being core and valence orbitals. Examples of 
such orbitals are the d orbitals of Zn, Cd, and Hg. 
Another important set of highly contracted orbitals is 
the s orbitals in T1, Pb, Bi, and Po. This latter set of 
orbitals is responsible for the inert-pair effect in these 
atoms and plays only a small role in structural chem- 
istry? Indeed, some years ago we showed that the 
structures of the heaviest main-group elements can be 
rationalized if one ignores these s orbitals entirely.2b 

One goal of our research program is to use the min- 
imum number of variable parameters possible. Every 
atomic orbital has two parameters in an extended 
Huckel or Huckel calculation. These are the Coulombic 
integral values, Hij, which determine the energy of the 
atomic orbitals before the onset of molecular interac- 
tion, and the Slater exponent, S; which controls the size 
of the atomic orbitals. In the case of the contracted s 
orbitals and d orbitals discussed above, we have used 
the following procedure to reduce these two parameters 
to a single parameter. We select an Hii value that en- 
sures that the partially corelike orbitals lie in a band 
just below the lower energy edge of the true valence 
orbitals. As Huckel theory (unlike extended Huckel 
theory) places the most bonding orbitals at  unrealisti- 
cally low energies, we therefore need to place the core 
electrons at equally unrealistic values. As a further 
consequence of this error we must overly contract the 
partially corelike orbitals to compensate for the energy 
weighting of the Wolfsberg-Helmholtz approximation. 
The virtue of this procedure is that in performing our 
calculations we need to optimize only the Slater expo- 

Lee 

(7) (a) Pitzer, K. S .  Acc. Chem. Res. 1979, 12, 271. (b) Pykk6, P.; 
Deaclaux, J.-P. Acc. Chem. Res. 1979,12,276. (c) Lob, L. L., Jr.; F'ykk6, 
P. Chem. Phys. Lett. 1979,62,333. 

fcc 

8-Mn 

bcc 

r-brass 
Figure 9. The fcc, hcp, bcc, @Mn, and y - b r a  crystal structures. 
The f, t, and 7 designations for hcp refer to the ratio of the line 
segments labeled a and c. See discussion in the text. 

nent, l, the Coulombic integral Hii being fixed by the 
already predetermined true valence orbital atomic pa- 
rameters. Therefore, in all the calculations reported in 
this Account there is at most one optimized parameter 
per set of structures. We believe, therefore, that the 
results displayed in Figures 6 and 8 are numerically 
significant. 
Alloys and Metals 

We turn now to binary and ternary alloys, i.e., com- 
pounds that are mixtures of two and three metallic 
elements. Over 60 years ago Hume-Rothery observed 
that one of the crucial variables in rationalizing the 
structures of these alloys is the average number of va- 
lence electrons per atom.8 Thus in noble-metal and 
main-group-metal alloys, Hume-Rothery found seven 
main alloy structure types. The types range from the 
comparatively simple face-centered cubic (fcc), body- 
centered cubic (bcc), and hexagonal closest packed 
(hcp) to the rather complex b-Mn and y-brass structure 
types. These structures are illustrated in Figure 9.9 
The hcp structure type is subject to wide variation, and 
metallurgists often divide this structure into three 
different branches. In l-hcp one finds a true closest 
packing where every atom has 12 nearest neighbors. 
This occurs when the hexagonal crystallographic axes 
a and c are in the ratio c /a  = 1.633. In addition, me- 
tallurgists consider the range of c/u from 1.55 to 1.58 
to be ehcp and the range from 1.77 to 1.88 to corre- 
spond to 1-hcp. It should be noted that these different 
hcp structure types can be genuinely different. For 
example, a sample of AggCdl spontaneously decomposes 
into two products, one being an E-hcp and the other an 

As we stated above, the most important variable for 
the crystal structure of these alloys is the average 
number of valence electrons per atom. For example, 
we can consider the three alloys Nb.lgCd0.81, Ago.&&.m, 
and Ag0.671n0.33, which all crystallize in the y-brass 
structure type. As may be seen, there is no fixed rela- 
tion between stoichiometry and structure type. How- 
ever, if one calculates the average number of s, p, and 
d electrons per atom for these three structures, one 
finds values of, respectively, 11.62, 11.60, and 11.66 

V-hCP. 

(8) (a) Humehthery, W.; Raynor, G. V. The Structure of Metals and 
Alloys; Inst. of Metals: London, 1962. (b) Hume-Rothery, W. In Phase 
Stability in Metals and Alloys; Rudman, P. S., Stringer, J., Jaffee, R. I., 
Eds.; McGraw-Hill: New York, 1967; p 3. 

(9) A discuseion of such pham can be found in the following: Peareon, 
W. B. The Crystal Chemistry and Physics of Metals and Alloys: Wiles 
New York, 1912. 
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Figure 10. Experimental and theoretically calculated electron 
ranges for the seven noble-metal Hume-Rothery electron phases. 
We assume that all structures whose calculated energy comes 
within 0.025 eV/atom of the lowest energy structure are viable 
chemical alternatives. 

I I Ule-AIl 
ll:O 1112 11:4 Ilk 11:s 12.0 -0.2 

Figure 11. Differences in energy for the seven Hume-Rothery 
electron phases aa functions of 8, p, and d e-/atom. Calculations 
were scaled to the second moment of C Q i  @-Mn structure type). 
A highly contracted d orbital with Hji(3d) = -60.0 eV and f(3d) 
= 2.9 waa used. Other atomic parameters were the same as those 
used in Figure 6. See text for discussion of these contracted d 
orbitals. 

electrons per atom (e-/atom). Indeed, all crystals that 
form in the y-brass structure type have a number of 
electrons per atom near this specific value of 11.65. All 
the other phases discussed above also have a corre- 
sponding zone of permissible electron counts. These 
experimentally determined zones of stabilitylO are 
plotted in Figure 10. Metallurgists call these zones the 
Hume-Rothery electron concentration rules. 

In Figure 11 we show our calculations on these seven 
structure types." The results in Figure 11 bear a 
striking similarity to the experimental ranges shown in 
Figure 10. In both, fcc is the structure favored at  low 
e-/atom values. At  slightly higher e-/atom values, there 
is a region where bcc, f-hcp, and P-Mn are stable. At  
11.65 s, p, and d electrons, y-brass is most stable. At  
higher electron counts, first ehcp is preferred and fi- 
nally 7-hcp is the preferred structure. We display these 
results fully in Figure 10. It may be seen in this figure 
that agreement between theory and experiment is ex- 
cellent. 

In order to assess the success of our theoretical model, 
we need to consider the atomic parameters used in our 

(10) (a) Hamen, M. Constitution of Binary Alloys; McGraw-Hill: 
New York, 1968. (b) Elliott, R. P. Conetitution of Binary Alloys-First 
Supplement; McGrew-Hik New York, 1965. (c) Shunk, F. A. Consti- 
tution of Binary Alloys: Second Supplement; McGraw-Hilk New York, 
1969. (d) Moffat, W. G .  The Handbook of Binary Phase Diagram; 
Genium, A.; Schenectady, NY, 1987. 

(11) Hoisted, L.; Lee, S. J. Am. Chem. SOC., in press. 
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Figure 12. Experimental and theoretically calculated electron 
ranges for transition-metal binary alloys. We assume that all 
structures whose calculated energy comes within 0.05 eV/atom 
of the lowest energy structure are viable chemical alternatives. 

calculation and their provenance. Our goal has been 
to minimize the number of variable atomic parameters. 
Therefore, we have used the same atomic parameters 
in this curve as those that were used in producing the 
results in Figure 6. We have, however, by the procedure 
previously discussed, used one variable parameter. This 
parameter controls the relative size of the d orbital. 
The curves shown in Figure 11 use a parameter value 
that optimizes the agreement between theory and ex- 
periment. Given the complexity of Figure 11, it is clear 
that our data are statistically significant. 

In a similar manner, we can consider transition-metal 
alloys. There are two new major structure types in 
transition-metal alloys. These are the u phase and the 
x phase. Both structures are described in ref 9. Of 
especial interest is the x phase, which not only is the 
structure of Nb-Os and Hf-Re and other binary alloys 
but also is the stable form of elemental Mn (a-Mn). 
This a-Mn structure has the distinction of being the 
most complicated known elemental structure. It con- 
tains 58 atoms in its cubic unit cell. Both this a-Mn 
structure type ( x  phase) and the u phase are found for 
electron counts that range between six and seven s, p, 
and d electrons per atom. At lower electron counts than 
six, the bcc structure is preferred, whereas at  higher 
electron counts, the hcp and fcc structures predominate. 
In Figure 12 we compare the results of our calculation 
to the known electron count ranges for these five 
structural types. These calculations are based on ac- 
cepted extended Huckel parameters for Fe. We 
therefore have adjusted no atomic parameters to im- 
prove the fit between theory and experiment. We see 
in Figure 12 that the agreement between theory and 
experiment is good. Only at  low electron counts does 
our model fail. For example, the bcc lattice is not the 
most favored structure at 6 e-/atom in our calculations. 
This is in contradiction with the experimental results. 
We find, however, that if we reduce the effect of the p 
orbitals, the bcc structure becomes the most favored 
structure at  5 and 6 e-/atom." This is a reasonable 
result. As one approaches the left side of the transi- 
tion-metal block of the periodic table, the p orbitals rise 
in energy and play a diminished role in determining the 
structure of the elements. 
Intermetallic Compounds 

We may apply this same method to other classes of 
materials. In this section we consider the family of 
compounds that have the chemical formula ZA,B2-,, 
where Z is an electropositive element such as an alkali 
metal, an alkaline-earth metal, a lanthanide, a group 
4 transition metal, or thorium, whereas A and B are 
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Figure 13. The MgCuz, CeCuz, AB2,  and ZrSi2 structure types. 
No electropositive atoms (alkali metal, alkaline earth, etc.) are 
shown in this figure. Thus, all bonds shown are between main- 
group atoms. The thin lines in the ZrSi2 structure type indicate 
the spatial relation of the Si zigzag chains to the Si quare lattice. 

main-group elements from columns 11-17 of the per- 
iodic table.2d There are over 1000 comopunds that 
fulfill the above conditions. Most of these compounds 
are found in just a handful of structure types. These 
structure types include the MgCuz, MoSiz, CeCdz, 
CeCuz, CaInz, MgAgAs, ABz,  ThSi,, ZrSiz, SmSbz, and 
C u a b  structure types.12 A few of these structures are 
illustrated in Figure 13. 

Using second-moment scaling, it is possible to ra- 
tionalize the relation between the overall number of 
valence electrons in a given compound and the structure 
adopted by that compound. To do so, we consider the 
electropositive atoms as mere electron donors. There- 
fore, we do not include the electropositive nuclei in our 
band calculations. Furthermore, it is assumed in our 
band calculations that there is only one type of elec- 
tronegative atom. Therefore, we do not study the effect 
of different A and B stoichiometries in the ZAxBz-x 
compounds. We count our electrons in the following 
manner. We assume that an electropositive element 
donates the number of electrons that would correspond 
to that element's most common oxidation state. Eu, Sr, 
Ti, Ce, and Th therefore donate 2, 2, 4 ,4 ,  and 4 elec- 
trons. For main-group atoms, we count only s and p 
electrons. Thus, for example, MgAgAs has 8e-/ZAxBz-x 
unit as 8e- = 2e- (from Mg) + le- (from Ag) + 5e- (from 
As). In Figure 14 we compare the experimentally de- 
termined electron counts for these structure types to 
the electron counts predicted by our second-moment- 
scaled band calculations. We see that there are several 
mismatches between theory and experiment. For ex- 
ample, the experimental electron count range for the 
CeCuz structure type i s  much broader than our theory 
would have predicted. However, overall agreement is 
still quite striking. 

In the same manner, we can apply second-moment- 
scaled Hamiltonians to rationalize other families of in- 

(12) (a) MgZn,: Friauf, J. Phys. Reo. 1927,29,34. (b) MgCu,: Grime, 
G.; MorrisJonea, W. Philos. Mag. 1929,7,1113. (c) Cufib: Elander, M.; 
Hiigg, G.; Weetgren, A. Ark. Kemi, Mineral. Ceol. 1936, 128, 1. (d) 
MoSi,: Strukturbencht 1,740. (e) Fe2P Rundqvist, A.; Jellinek, F. Acta 
Chem. Scand. 1969,13,425. (0 C@i: Geller, S. Acta Crystallogr. 1966, 
8,83. (g) CeCuz: Larson, A. C. Acta Crystallogr. 1961,14,73. (h) CeCd2: 
Iandelli, A.; Ferro, R. Can.  Chim. Ital. 1964, 84, 463. (i) MgAgAs: 
Nowotny, H.; Sibert, W. 2. Metallkd. 1941,33,391. fj) ThSi,: Brauer, 
G.; Mitius, A. 2. Anorg. Allg. Chem. 1942,345,249. (k) ZrSi,: Vaughn, 
P. Am. Crystallogr. Assoc. Summer Meeting 1965, 8. (1) Villars, P.; 
Calvert, L. D. Pearson's Handbook of Crystallographic Data for Inter- 
metallic Phases; Am. SOC. Metals: Metals Park, OH, 1985. 
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Figure 14. Theoretically calculated and experimental electron 
ranges for ZA,,B, phases. See ref 2d for calculational parameters. 

termetallic stoi~hiometries.'~ At the present time we 
have limited ourselves to covalent chemical systems 
where electron count plays a predominant role in de- 
termining crystal structure types. The results of this 
and the preceding sections show that within these lim- 
itations, whether the system is a molecule, alloy, in- 
termetallic compound, or insulator, second-moment- 
scaled Huckel theory provides an excellent basis for the 
rationalization of known crystal structures. 
Conclusion 

Molecular orbital theory provides a unified picture 
of the bonding in organic, inorganic, molecular, cluster, 
crystal, and surface chemistry. Many of the most 
profound applications of molecular orbital theory such 
as the Huckel4N + 2 rule or the Woodward-Hoffmann 
rules have relied on molecular orbital theories of the 
very simplest sort.14 However, it is often believed that 
to achieve better computational accuracy one must 
abandon the simplicity of these original models. We 
hope that in this Account we have shown that, by ap- 
propriately modifying a theory even as basic as Huckel 
theory, we can achieve a remarkable resonance between 
theory and experiment. At  the moment, our rather 
straightforward technique of second-moment scaling 
produces quantitative results as accurate as or more 
accurate than other, more complex electron structure 
techniques for purely covalently bonded systems. Our 
study on the Hume-Rothery rules for noble metals is, 
to our knowledge, the first complete theoretical study 
of these well-established rules. We hope that in the 
future new modifications in Huckel theory will enable 
the chemist to study an even greater range of structural 
problems. 
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